??斗地主捕鱼电竞提现秒到 广告位招租 - 15元/月全站展示
??支付宝搜索579087183领大额红包 ??伍彩集团官网直营彩票
??好待遇→招代理 ??伍彩集团官网直营彩票
??络茄网 广告位招租 - 15元/月全站展示
BAT机器学习面试1000题系列(第211 215题)

转载   2017-12-01   浏览量:281



212.一般,k-NN最近邻方法在( )的情况下效果较好
  A.样本较多但典型性不好
  B.样本较少但典型性好
  C.样本呈团状分布
  D.样本呈链状分布

  正确答案:B
  解析:K近邻算法主要依靠的是周围的点,因此如果样本过多,那肯定是区分不出来的。因此应当选择B
  样本呈团状颇有迷惑性,这里应该指的是整个样本都是呈团状分布,这样kNN就发挥不出其求近邻的优势了,整体样本应该具有典型性好,样本较少,比较适宜。


213.下列方法中,可以用于特征降维的方法包括()
  A.主成分分析PCA
  B.线性判别分析LDA
  C.深度学习SparseAutoEncoder
  D.矩阵奇异值分解SVD
  E.最小二乘法LeastSquares

  正确答案:ABCD
  解析:降维的3种常见方法ABD,都是线性的。深度学习是降维的方法这个就比较新鲜了,事实上,细细想来,也是降维的一种方法,因为如果隐藏层中的神经元数目要小于输入层,那就达到了降维,但如果隐藏层中的神经元如果多余输入层,那就不是降维了。
最小二乘法是线性回归的一种解决方法,其实也是投影,但是并没有进行降维。


214.下面哪些是基于核的机器学习算法?()
  A.Expectation Maximization(EM)(最大期望算法)
  B.Radial Basis Function(RBF)(径向基核函数)
  C.Linear Discrimimate Analysis(LDA)(主成分分析法)
  D.Support Vector Machine(SVM)(支持向量机)

  正确答案:BCD
  解析:径向基核函数是非常常用的核函数,而主成分分析法的常规方法是线性的,但是当遇到非线性的时候,同样可以使用核方法使得非线性问题转化为线性问题。支持向量机处理非线性的问题的时候,核函数也是非常重要的。


215.试推导样本空间中任意点x到超平面(w,b)的距离公式。





转载自:https://mp.weixin.qq.com/s?__biz=MzI4MTQ2NjU5NA==&mid=2247485869&idx=2&sn=ec624d038785bc3a6015895328122ac6&chksm=eba98a20dcde0336da14a304dd9fc61bdef27cb456d1874614bbbcbd2043a0267914e7ee1bd3&scene=21#wechat_redirect

招聘 不方便扫码就复制添加关注:程序员招聘谷,微信号:jobs1024



深度学习面试题2018
1、问题:如何优化模型:加速收敛,避免overfit,提升精度..?答案:可以从以下几个参数开始:-batchsizeeffect;-learningrateeffect;-weightinitializationeffect;-batchnormalization-drop-out;-modelaverage;-fine-tunin
深度学习面试100题(第1-5题):经典??嫉鉉NN
1、梯度下降算法的正确步骤是什么?a.计算预测值和真实值之间的误差b.重复迭代,直至得到网络权重的最佳值c.把输入传入网络,得到输出值d.用随机值初始化权重和偏差e.对每...